CHARACTERISTICS OF BAGASSE BIOCHAR IN INDUSTRIAL SCALE PRODUCTION

Authors

  • Jaka Kuncara Department of Master of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan
  • Martomo Setyawan Department of Master of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan
  • Dhias Cahya Hakika Department of Master of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan

Keywords:

Biochar, Pyrolysis, Sugarcane Bagasse.

Abstract

Bagasse is a waste that can still be processed into more useful materials, in this case it will be processed into biochar. The bagasse used is sugarcane milling waste from a sugar factory in Majalengka, Cirebon, West Java. The pyrolysis process is carried out at the biochar factory of PT XXX which is also located in the area. Making biochar with an industrial-scale pyrolysis reactor namely the rotary carbonization furnace reactor. The main components are a bagasse feeder system, rotary drum dryer, pyrolysis reactor, fan and condenser. The system operates in line from the feeder to the biochar output. The purpose of this research is to investigate the pyrolysis of bagasse in a rotary horizontal carbonization furnace reactor to study the effect of pyrolysis process parameters in the form of temperature and residence time on the product characteristics of biochar. The tests provided results that the residence time has an effect on the proximate and ultimate analysis of biochar. The results showed that with increasing residence time, the volatile meter, hydrogen and oxygen decreased while the ash content, fixed carbon, carbon and gross calories increased. The test also provides results that temperature affects the proximate and ultimate analysis of biochar. The results show that as the pyrolysis temperature increases, the parameters of ash content, fixed carbon and gross calory increase while the parameters of volatile metter, hydrogen and oxygen decrease. The morphological structure of biochar changes with increasing pyrolysis temperature and the results showed that the higher the pyrolysis temperature, the larger the diameter of the biochar pores.

References

Aguiar, E. C., Méndez, A., Gascó, G., Lado, M., & González, A. P. (2024). The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Applied Sciences (Switzerland), 14(10). https://doi.org/10.3390/app14104283

Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00440-z

Anukam, A., Mamphweli, S., Reddy, P., Okoh, O., & Meyer, E. (2015). An Investigation into the Impact of Reaction Temperature on Various Parameters during Torrefaction of Sugarcane Bagasse Relevant to Gasification. Journal of Chemistry, 2015. https://doi.org/10.1155/2015/235163

Benedetti, V., Patuzzi, F., & Baratieri, M. (2018). Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Applied Energy, 227(January), 92–99. https://doi.org/10.1016/j.apenergy.2017.08.076

Bo, X., Zhang, Z., Wang, J., Guo, S., Li, Z., Lin, H., Huang, Y., Han, Z., Kuzyakov, Y., & Zou, J. (2023). Benefits and limitations of biochar for climate-smart agriculture: a review and case study from China. Biochar, 5(1). https://doi.org/10.1007/s42773-023-00279-x

Boer, F. D. (2021). Valorization of sugarcne bagase via slow pyrolysis and its by product for the potection of wood. Unite de Recherche BioWooED.

Chen, D., Chen, X., Sun, J., Zheng, Z., & Fu, K. (2016). Pyrolysis polygeneration of pine nut shell: Quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresource Technology, 216, 629–636. https://doi.org/10.1016/j.biortech.2016.05.107

Choghamarani, F. M., Moosavi, A. A., Sepaskhah, A. R., & Baghernejad, M. (2019). Physico-hydraulic properties of sugarcane bagasse-derived biochar: the role of pyrolysis temperature. Cellulose, 26(12), 7125–7143. https://doi.org/10.1007/s10570-019-02607-6

Daniyanto, Sutidjan, Deendarlianto, & Budiman, A. (2015). Torrefaction of Indonesian sugar-cane bagasse to improve bio-syngas quality for gasification process. Energy Procedia, 68, 157–166. https://doi.org/10.1016/j.egypro.2015.03.244

Deng, W., Van Zwieten, L., Lin, Z., Liu, X., Sarmah, A. K., & Wang, H. (2017). Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. Journal of Soils and Sediments, 17(3), 632–640. https://doi.org/10.1007/s11368-015-1347-4

Dharma, U. S., Rajabiah, N., & Setyadi, C. (2017). Biobriket Dengan Perekat Berbahan Baku Tetes Tebu. Jurnal Teknik Mesin Univ. Muhammadiyah Metro, 6(1), 92–102.

Efetobor, U. J., Ikpeseni, S. C., & Sada, S. O. (2022). Determination of Proximate, Ultimate and Structural Properties of Elephant Grass as Biomass Material for Bio-oil Production. Journal of Applied Sciences and Environmental Management, 26(12), 1903–1907. https://doi.org/10.4314/jasem.v26i12.3

Figueroa, J. E. J., Ardila, Y. C., Hoss Lunelli, B., Filho, R. M., & Wolf Maciel, M. R. (2013). Evaluation of pyrolysis and steam gasification processes of sugarcane bagasse in a fixed bed reactor. Chemical Engineering Transactions, 32, 925–930. https://doi.org/10.3303/CET1332155

Ghorbani, M., Amirahmadi, E., Neugschwandtner, R. W., Konvalina, P., Kopecký, M., Moudrý, J., Perná, K., & Murindangabo, Y. T. (2022). The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142214722

Gond, R. K., Gupta, M. K., & Jawaid, M. (2021). Extraction of nanocellulose from sugarcane bagasse and its characterization for potential applications. Polymer Composites, 42(10), 5400–5412. https://doi.org/10.1002/pc.26232

Guida, M. Y., & Hannioui, A. (2017). Properties of bio-oil and bio-char produced by sugar cane bagasse pyrolysis in a stainless steel tubular reactor. Progress in Agricultural Engineering Sciences, 13(1), 13–33. https://doi.org/10.1556/446.13.2017.2

Hiranobe, C. T., Gomes, A. S., Paiva, F. F. G., Tolosa, G. R., Paim, L. L., Dognani, G., Cardim, G. P., Cardim, H. P., dos Santos, R. J., & Cabrera, F. C. (2024). Sugarcane Bagasse: Challenges and Opportunities for Waste Recycling. Clean Technologies, 6(2), 662–699. https://doi.org/10.3390/cleantechnol6020035

Hugo, T. J. (2010). Pyrolysis of Sugarcane. December.

Iwuozor, K. O., Chizitere Emenike, E., Ighalo, J. O., Omoarukhe, F. O., Omuku, P. E., & George Adeniyi, A. (2022). A Review on the thermochemical conversion of sugarcane bagasse into biochar. Cleaner Materials, 6(October), 100162. https://doi.org/10.1016/j.clema.2022.100162

Jamilatun, S., Amelia, S., Pitoyo, J., Ma’Arif, A., & Mufandi, I. (2023). Preparation and Characteristics of Effective Biochar Derived from Sugarcane Bagasse as Adsorbent. International Journal of Renewable Energy Research, 13(2), 673–680. https://doi.org/10.20508/ijrer.v13i2.13719.g8737

Jamilatun, S., Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566

Jiang, T. J., Morgan, H. M., Tsai, W. T., Chien, H., Yen, T. B., & Lee, Y. R. (2024). Thermochemical Conversion of Biomass into Biochar: Enhancing Adsorption Kinetics and Pore Properties for Environmental Sustainability. Sustainability (Switzerland), 16(15). https://doi.org/10.3390/su16156623

Junianti, F., Diana, S., Ramdhani, A., Lestari, R. I., Pradana, I., & Ranggina, A. A. D. (2024). Pembuatan Briket dengan Variasi Ukuran Partikel Cangkang Kelapa Sawit ( CKS ) dan Tandan Kosong Kelapa Sawit ( TKKS ). Majamecha, 6, 169–179.

Kalifa, M. A., Habtu, N. G., Jembere, A. L., & Genet, M. B. (2024). Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties. Current Research in Green and Sustainable Chemistry, 8(August 2023), 100395. https://doi.org/10.1016/j.crgsc.2023.100395

Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

Khoo, R. Z., Chow, W. S., & Ismail, H. (2018). Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose, 25(8), 4303–4330. https://doi.org/10.1007/s10570-018-1879-z

Kocsis, T., Ringer, M., & Biró, B. (2022). Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Applied Sciences (Switzerland), 12(8). https://doi.org/10.3390/app12084051

Leko, B. B., Noor, N. A., & Usman. (2021). Analisis Potensi Ampas Tebu Sebagai Pembangkit Listrik Biomassa di Pabrik Gula Takalar. Prosiding Seminar Nasional Teknik Elektro Dan Informatika (SNTEI), 21 Septemb(September), 12–16.

Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

Li, W., Amin, F. R., Fu, Y., Zhang, H., He, Y., Huang, Y., Liu, G., & Chen, C. (2018). Effects of Temperature, Heating Rate, Residence Time, Reaction Atmosphere, and Pressure on Biochar Properties. Journal of Biobased Materials and Bioenergy, 13(1), 1–10. https://doi.org/10.1166/jbmb.2019.1789

Liao, W., Zhang, X., Ke, S., Shao, J., Yang, H., Zhang, S., & Chen, H. (2022). Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod, 186. https://doi.org/10.1016/j.indcrop.2022.115238

Liao, Y., Cao, Y., Chen, T., & Ma, X. (2015). Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse. Bioresource Technology, 194, 196–204. https://doi.org/10.1016/j.biortech.2015.06.121

Libardi, N., & Castilhos, A. B. De. (2024). Biochar : From Laboratory to Industry Scale — An Overview Brazilian Context , and Contributions to Sustainable Development. Processes. https://doi.org/10.3390/pr12051006

Miranda, N. T., Motta, I. L., Filho, R. M., & Maciel, M. R. W. (2021). Sugarcane bagasse pyrolysis: A review of operating conditions and products properties. Renewable and Sustainable Energy Reviews, 149(July), 111394. https://doi.org/10.1016/j.rser.2021.111394

Nazella, E. (2023). Pemanfaatan Biochar Barbahan Dasar Ampas Tebu (Saccharum Officinarum Linn) Sebagai Bahan Pembenah Tanah pada Lahan Bekas Tambang Batubara. Jurnal Mineral, Energi, Dan Lingkungan, 6(2), 38. https://doi.org/10.31315/jmel.v6i2.8096

Nsamba, H. K., Hale, S. E., Cornelissen, G., & Bachmann, R. T. (2015). Sustainable Technologies for Small-Scale Biochar Production — A Review. Journal of Sustainable Bioenergy Systems, March, 10–31. http://creativecommons.org/licenses/by/4.0/

Oasmaa, A., Van De Beld, B., Saari, P., Elliott, D. C., & Solantausta, Y. (2015). Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy and Fuels, 29(4), 2471–2484. https://doi.org/10.1021/acs.energyfuels.5b00026

Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613. https://doi.org/10.1016/j.fuel.2012.06.112

Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222–236. https://doi.org/10.1016/j.aoas.2019.12.006

Pratama, B. S., Aldriana, P., Ismuyanto, B., & Hidayati, A. . D. S. N. (2018). Konversi ampas tebu menjadi biochar dan karbon aktif untuk penyisihan Cr (VI). Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 2(1), 7–12. https://rbaet.ub.ac.id/index.php/rbaet/article/view/45

Prochnow, F. D., Cavali, M., Dresch, A. P., Belli, I. M., Libardi, N. J., & de Castilhos, A. B. J. (2024). Biochar: From Laboratory to Industry Scale- An Overview Brazilian Context, and Contributions to Sustainable Development. Processes, 12, 1006. https://doi.org/10.3390/pr12051006

Setiati, R., Wahyuningrum, D., Siregar, S., & Marhaendrajana, T. (2020). Ethos (Jurnal Penelitian dan Pengabdian Masyarakat): 257-264 OPTIMASI PEMISAHAN LIGNIN AMPAS TEBU DENGAN MENGGUNAKAN NATRIUM HIDROKSIDA. Jurnal Penelitian Dan Pengabdian Masyarakat, 4(2), 257–264.

Shalini, S. S., Palanivelu K, Ramachandran A, & Raghavan, V. (2021). Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. Biomass Conversion and Biorefinery, 11(5), 2247–2267. https://doi.org/10.1007/s13399-020-00604-5

Stegen, S., & Kaparaju, P. (2020). Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse. Fuel, 276(December 2019), 118112. https://doi.org/10.1016/j.fuel.2020.118112

Sudharshan, K., Laxminarayana, B., Sainath, R., & Surya, N. (2021). A significant assessment on the production of biofuel and biochar from sugarcane bagasse using thermolysis. Science, Technology and Development, X(Xi), 290–296.

Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L., & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresources and Bioprocessing, 9(1). https://doi.org/10.1186/s40643-022-00618-z

Tumuluru, J. S., Boardman, R. D., Wright, C. T., & Hess, J. R. (2012). Some chemical compositional changes in miscanthus and white oak sawdust samples during torrefaction. Energies, 5(10), 3928–3947. https://doi.org/10.3390/en5103928

Valix, M., Katyal, S., & Cheung, W. H. (2017). Combustion of thermochemically torrefied sugar cane bagasse. Bioresource Technology, 223(October), 202–209. https://doi.org/10.1016/j.biortech.2016.10.053

Varhegyi, G., Antal, M. J., Szekely, T., & Szabo, P. (1989). Kinetics of the Thermal Decomposition of Cellulose, Hemicellulose, and Sugar Cane Bagasse. Energy and Fuels, 3(3), 329–335. https://doi.org/10.1021/ef00015a012

Varma, A. K., & Mondal, P. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, 95, 704–717. https://doi.org/10.1016/j.indcrop.2016.11.039

Yadav, K., & Jagadevan, S. (2020). Influence of Process Parameters on Synthesis of Biochar by Pyrolysis of Biomass: An Alternative Source of Energy. Recent Advances in Pyrolysis, 1–14. https://doi.org/10.5772/intechopen.88204

Yudo, H., & Jatmiko, S. (2012). Analisa Teknis Kekuatan Mekanis Material Komposit Berpenguat Serat Ampas Tebu (Baggase) Ditinjau Dari Kekuatan Tarik Dan Impak. Kapal, 5(2), 95–101.

Zafeer, M. K., Menezes, R. A., Venkatachalam, H., & Bhat, K. S. (2024). Sugarcane bagasse-based biochar and its potential applications: a review. Emergent Materials, 7(1), 133–161. https://doi.org/10.1007/s42247-023-00603-y

Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: A review. Energy, 171, 581–598. https://doi.org/10.1016/j.energy.2019.01.035

Downloads

Published

2024-11-20

How to Cite

Kuncara, J., Setyawan, M., & Hakika, D. C. (2024). CHARACTERISTICS OF BAGASSE BIOCHAR IN INDUSTRIAL SCALE PRODUCTION. Prosiding Dan Call Paper Widya Wiwaha, 3(1), 145 –. Retrieved from https://jurnal.stieww.ac.id/index.php/semnas/article/view/1101